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New Boundary Integral Equations for CAD of
Waveguide Circuits: Guided-Mode Extracted

Integral Equations
Kazuo Tanaka Member, IEEE, and Masaalki Nakahara

Abstract—Novel boundary integral equations which are ap-
plicable to the analysis of’ many kinds of waveguicie circuits are
presented. The new integral equations can treat the waveguide

discontinuity problems like the scattering lby the isolated finite-

sized metallic objects or cavity problems and do not employ

normal-mode expansion techniques. They are suitable for the

basic theory of CAD software for various waveguide circuits.
The 2-port and H-plane waveguide discontinuity problems

which satisfy the single-mode and two-mode conditions are
treated in this paper. The case of waveguide corner bend is

considered as an example. The numerical examples are shown
in order to confirm the validity of the new integral equations.

I. INTRODUCTION

w

ITH the development of computer-aided design

(CAD) of complicated waveguide circuits or dis-

continuities, numerical approaches such as boundary ele-

ment method (moment method) based on integral equa-

tion methods occupy attentions of many researchers.

References [1]–[6]. In the direct application of these in-

tegral equation m~thods to waveguide discontinuity prob-

lems, we often encounter the treatment of integral along

infinite region of the uniform waveguide. In order to avoid

this difficulty, various techniques based on normal-mode

expansion theory are often employed in the integral equa-

tion methods. However, these methods based on the nor-

mal-mode expansion techniques will lbe very complicated

in the application of CAD software for the various three-

dimensional waveguide circuits or open dielectric wave-

guide circuits of complicated configuration.

In this paper, novel boundary integral equations which

are applicable to the analysis of many kinds of waveguide

circuits are presented [7]. Since new integral equations

can treat the waveguide discontinuity problems like the

scattering by the isolated finite-sizecl metallic objects or

cavity problems and do not employ the normal-mode ex-

pansion techniques, they are very suitable for the basic

theory of CAD software for various waveguide circuits.

The 2-port waveguide discontinuity problems are consid-

ered. The case of waveguide corner bend is considered in
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this paper. Considering rather simple problems, we can

show the basic idea and discovery which are used in de-

riving new integral equations. We treat the case of H-plane

waveguide discontinuity problems which satisfy the sin-

gle-mode and two-mode conditions. The numerical ex-

amples of the 2-port waveguide circuits are shown in or-

der to confirm the validity of the new integral equations.

II. WAVEGUIDE BENDS

Since the new boundary integral equations for the gen-

eral wavegui{de circuit have complicated expressions, we

restrict our attention to a simple two-ports circuit, i.e.,

the arbitrary-shaped waveguide bend as shown in Fig. 1.

For the mathematical simplicity, we consider the H-plane

waveguide discontinuity problem. The time factor exp

(jut) is understood. The waveguide 1 of width 2koa1 and

waveguide 2 of width 2ko a2 are joined together to form

angle 9Z-(31 through the connection section of arbitrary-

shape as shown in Fig. 1, where wavenumber k. is given

by kO = u/c and c is light velocity in vacuum. It is as-

sumed that bot]h waveguides are filled with dielectric of

relative permittivity e.. We first consider the case where
they satisfy the single-mode condition. We denote the

boundaries of both waveguides by Cl, C2, C~ and Cd, and

those of the connection section by C~ and CG. We also

denote the virtual boundaries between two waveguides and

the connection section by Clo and C20 as shown in Fig. 1.

A TEIO modle denoted by E ‘(2) (x) is incident from the

waveguide 2 to the connection section. We denote the z

component c}f the total electric field by E(x). From Max-

well’s equations and Green’s theorem, the conventional

boundary integral representation for the total field E(x) is

written as

!E(x) = ~ G@(x)) &?2(x’ )/&z ‘ dl’ (1)

where

G(xlx’ ) = –j/4H$2)(n,koIx – x’ l), (2)

C = Cl + C2 -f- CB + Cb i- CS i- Cb, e, = (6,)112, a~an

represents the derivatives normal to Cl ‘CG, in the outward
direction and vector x = (x, y) = (r, 19)and x’ = (x’, y’ )

denote the observation point and source point, respec-

tively, in the coordinate system shown in Fig. 1. The in-
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Fig. 1. Waveguide bend with arbitrary shaped connection section

cident wave is reflected and transmitted by the bend. The

reflected wave in the waveguide 2 and transmitted wave

in the waveguide 1 are denoted by S22E ‘(2) (x) and
S21E ‘(1) (x), respectively, where Sza and Szl are reflection

and transmission coefficients, respectively. The coeffi-

cients S21 and S22 are referred to the section Cl o and C20,

respectively, shown in Fig. 1. The total field E(x) will be

very complicated in the vicinity of the connection section.

Only the reflected wave plus the incident wave, however,

can survive at points far away from the bend in the wave-

guide 2 and only the transmitted wave can survive at

points far away in the waveguide 1, So, we decompose

the total field E(x) in the waveguides 1 and 2 into field

components as

E(x) = Et(x) + S21E+(1)(X), in the waveguide 1,

(3)

E(x) = EC(X) + S2JE+(2) (X) + E-(2)(x),

in the waveguide 2, (4)

respectively. The field denoted by E c (x) is the difference

between the total field and the transmitted wave in the

waveguide 1 and the difference between the total field and

the reflected and incident waves in the waveguide 2. The

field Et(x) is called the disturbed field in this paper [7]-

[10]. For convenience of notation we denote the total field

in the connection section by the same symbol E c used for

the disturbed field in the waveguieds:

E(x) = Et(x) in the connection section. (5)

We first consider the case where the observation point x
is placed at a point far away from the connection section

in the waveguide 1. Substituting (3) and (4) into (1), we

can obtain the following equation:

[
Et(x) + S21 E+(l)(x)

-! G@’ ) ilE+(l)(x’ )/&z’ dl’
c1+ C2 1

+ S22
1

G(XIX’ ) dE+(2) (x’ )/thz’ dl’
C3 + C4

+ ! G(xlx’ ) 13E-(2)(x’ )/&z’ all’. (6)
C3 + C4

The semi-infinite line integrals of the mode functions

E ‘(1) (x) and E *(2) (x) along Cl + C2 and Cg + Cq can be

substituted by line integral along virtual boundary CIO and

C20 by using Green’s theorem. We have:

E+(l) (x) – ! ~XIX’ ) 13E+(1)(x’ )/&t’ dl’
c1+ C2

= u+(l) (x) (x to the right of CIO)

— I @lX’ ) t)E+(l)(x’)/thz’ dl’
c1+ C2

. u+(l)(x) (x to the left of Clo) (7)

where

~+(v (x) =
i

[G(xlx’ ) ~E+(l)(x’ )/&t~
Clo

–E&(’” “ ‘-’ ‘ “’ ‘- “- ““’ ‘-’“’(x’) d(i(xlx’ )/dn~] dl’ (?3)

and

!
E*(2)(x) – C,+c,

. U+(2)(x)

G(xlx’ ) dE*(2)(x’ )/&z’ dl’

(x to the left of C20),

— ! @XIX’ ) dEi(2) (x’ )/&I’ dl’
C3 + C4

—— U*(2 (x) (x to the right of C20)

where

(9)

— E*(z) (x’ ) aqqd )/af2jl dl’ (lo)

respectively, and the unit vector nj (j = 1, 2) normal to

virtual boundaries Cjo (j = 1, 2) are shown in Fig. 1. By

using (7) and (9), we can rewrite (6) as

Et(x) + S21U*(l) (X)

. ! GIXIX’ ) a~c(d )/an’ dlf – S22 U+(2)(X)
c

— u -(2)(x). (x to the right of C,o) (11)

Since we can put the observation point x in ( 11) at a point

far away (r - m, 0 = 01) from the connection section in

the waveguide 1, we can use the asymptotic expansion of

Green’s function in (11) as

G(x[x’ ) = G(3-, O/x’)

= A(r)g(t?lx’ ) + 0[(kor)-3\2], (12)
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where

A(r) = –j/4 [2j/(mz,k0 r)] 1/2 expl (–jiz,kO r) (13)

g(Olx’ ) = exp (jn,kOx’ cos 0 + jiz,kOy ’ sin 0). (14)

Since the metallic waveguide cannot support waves of the

form A(r) along its boundary, the following conditions

must be held:

lim E=(r, f31)/4(r) = 0,
r-cc

lim Ec(r, tlJ/.4(r) = O. (15)
r+cc

We substitute asymptotic expression (1;!) into (1 1), divide

both sides of the resulting equation by the common func-

tion A(r) and set O = 01 and r - m in the final equation.

If we use the conditions (15), we can obtain the following

equation:

S*1M+(l) (tl~) + s*~M+(2) (e~)

.
{ c

g(tlllx’ ) &?Zc(T’ )/&t’ dl’ - M-(2)(01) (16)

where

@J)(@ =
!

~. [ g(olx’ ) NIf(j) (x’ )/an; – E~(j) (x’)

“ ag(olx’ )/an;] dl’ (j = 1,2) (17)

We next consider a condition that must hold at a point far

away from the connection section in thle waveguide 2. By

the same procedure as that used in deriving (16), we can

obtain the following equation:

$, M+(’) (O*) + S22M+(’) (62)

——
[ c

g(Oz\x’ ) &Ec(x’ )/&’ dl’ -- M-(2)(62). (18)

If we solve (16) and (18) for unknown constants S21 and

S22, then they can be expressed in tenms of the disturbed

field aE c (x) /&t on the walls of the two waveguides and

of the total field dEc (x)/&z = all(x) /i3n on the wall of

the connection section as

S2, =
[~

W(XI) aEc(x’)/an’ dl’
c

V+j@2)(02)M+(2)(fjj) – Z@2)((11)~+(2)(e2) A

(19)

SZ2 = [(_ V(xf) aEc(i )/an’ dl’
L JL

+ M-(2)(6,)A4+(’)(02)

where

J?@’ ) = M+(2) (Oz)g(el lx’ :

— U~-@)(~2)M+(1 )(0,) A

(20)

— M+(2) (oJg(e2\x’ ) (21)

V(x’ ) = i14’-(1)(01)g(021x’ ) – M+(1) (t12)g(f)11x’ ) (22)

A = M’-(1) (01) M+(2)(02) – MOM+.

(’23)

III. NEW BOUNDARY INTEGRAL EQUATION

Since the rejection and transmission coefficients can be

expressed in terms of the field aE c (x) / t)n, the conven-

tional integral representation (1) can be rewritten in terms

of only the field Et(x) by substituting (3), (4), (5), (19)

and (20) into (1) as

*

Et(x) =
\

~(XIX’ ) aEc(X’ )/&’ d’ + ~i(X) (24)
*c

where

P(xjx’ ) = (7(X1X’) – [U+(l)(X) J?@’)

+ U+(2) (x) V(x’ )] /A (25)

P (x) == – U-(2)(x)

— fJ+w (x) [M ‘(2)((l I) M-(*)(0’)

—M+(2)(62)M-(2)(01)]/A

— U+(*) (@ [~-(’) (fll)~+(l) (02)

— @Z)(02)M+m(01) ]/A. (26)

If we introduce the boundary condition that the total and

disturbed electric fields must vanish on the boundaries C

= Cl + Cz .+ C~ + Cq + C~ + Cb, we can obtain the

new integral (equation as follows:

*

o=
\

P(xlx’ ) f3Ec(x’ )/an’ d’ + I’i(x) (27)
(C

The integral equation (27) is compared with the conven-

tional equaticm obtained by introducing the boundary con-

dition to (1) in Table I. We find that the integral equation

(27) also extends over the same infinite region C as in the

conventional integral equation. However, the disturbed

field become zero in the region sufficiently far away from

the connecticm section, so that, in equation (27), C can be

considered a finite region. So, we can perform the nu-

merical analysis of (27) directly. Apart from the differe-

nce in the k.emel and in the impresses function, we find

that the basic structure of (27) is same as that of the con-

ventional one. So, we can apply various techniques that

were developed for solving the conventional equation to

solve the boundary integral equation (27). Since we can
consider that, in the kernel function P(xlx’ ), the part de-

pending on the guided mode is extracted from the con-

ventional kernel function G(x1 x’ ), we can call this type

of integral equation the guided-mode extracted integral

equation (GMEIE).



1650 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 40, NO. 8, AUGUST 1992

TABLE I

COMPARISONBETWEENCONVENTIONALINTEGRALEQUATIONAND NEW
INTEGRAL EQUATION (27).

Conventional Integral New Integral
Equation Equation (27)

Unknown function E(x) E c (X)

Kernel function G(xlx’ ) P(x\x’ )

Impressed term incident wave F’ (X)

Integral region C= C,+ C2+C3 C= C,+ C2+C3
+C4C5+C6 +C4+C5+C6

IV. TWO-MODE CONDITION

So far, we have considered the case where the wave-

guides satisfy the single-mode condition. Let’s next con-

sider the case of multi-mode conditions. Since the general

multi-mode conditions requires a complicated treatment,

for simplicity, we explain the case where both wave-

guides satisfy the two-mode condition. Results for gen-

eral multi-mode cases will be easily anticipated from this

example. We assume that TEIO mode, denoted by

E;(2) (x), is incident to the connection section from the

waveguide 2. We assume that the total field should be

given by the following expressions:

E(x) = Et(x) -t- S21,1E~f1)(x) + SZ1,2E:(1) (X),

in the waveguide 1, (28)

E(X) = EC(x) i- Szl, 1E;(2) (x) + S22,2E;(2) (x)

+ E;(2)(x), in the waveguide 2, (29)

E(x) = Ec (x) in the connection section, (30)

where S21,~ (i, j, = 1, 2) represent the scattering coeffi-

cients of TE,O mode in the waveguide j for the case of

incident from waveguide 2 and E,*(J)(x) (i, j = 1, 2) rep-

resents the mode function TEio mode in the waveguide j.

Substituting (28), (29), and (30) into (1) and using Green’s

theorem (7) and (9), we can obtain the following relations

in a way similar to that which has been used in the case

of the single-mode condition:

EC(X) + S21, 1 1U+(l) (x) + S2,,2up (x)

=
!

G(xlx’ ) dEc(x’)/~n’ dl’
c

–s 22,1 ~F(2) (x) – S22,2 up (x) – up) (x)

(31)

where

@J)(x) =
!

[G(xlx’ ) (li?;f~)(x’ )/an; – .E:(j)(x’ )
qo

“ ~G(xIx’)/&zj’] dl’ (i, j = 1, 2). (32)

Substituting asymptotic expression (12) into (31) and fol-

lowing the procedure used in the previous section, we can

obtain the following relations:

S21,1M:(1) (61) + s@l@)(ol)

‘(2) e ) + S22,2M2+ s22,1~l ( 1
+(z)(~l)

=

! c
g(dllx’ ) i3Ec(x’ )/&z’ dl’ – A4;(2)(OJ (33)

S21,*M:(1) (02) + s2@4;(1)(e2)

‘(2) (02) + S22,2M2+ S22,1M1 ‘(2) (02)

=
! c

g(021x’ ) &Ec(x’ )/&z ‘ dl’ – A4;(2) (62) (34)

where

M;(j) (0) =
I

~,, [ g(@’ ) dE;(j)(x’ )/&z;

— E:(j) (X’ ) dg(dlx’ )/&z;] dl’

(i, j = 1, 2). (35)

Since four unknown coefficients S21,~, S21,z, S22,~and S22,z

exist in this case, they cannot be obtained from two re-

lations (33) and (34). It is necessary to derive two more

relations in order to determine these coefficients. They are

obtained as follows: Substituting asymptotic expression

(12) into (3 1), divide both sides of the resulting equation

by the common function A(r) and differentiate both sides

of the resulting equation with respect to the variable angle

f3. If we set O = 01, 0 = 02 and r ~ m in the final equation,

we can obtain the following two relations as

‘(1) 19) + S21,2NJ(’ )(%)szl,l~l ( 1

‘(2) 19 ) + S22,2N2+ S22,1N1 ( 1 ‘(2) (01)

.

!
/Z(dl/X’) dEc(x’ )/&z’ dl’ – N;(2)@J

c

(36)

SZ1,~N:(’) (02) + S21,*N;(l) (02)

+ S22,,N~(2) (02) + SZ2,2N;(2) (02)

.
~

h(021x’ ) dEc(x’ )/&z’ dl’ – N;(2)(02) (37)
c

where

N~(j)(o) =

h(fllx’ ) =

.

i
[h(6Jlx’ ) dE;(])(x’ )/&z;

Cjo

— E:(l) (x’ ) dh(~lx’ )/&z;] dl’

(i, j = 1, 2)

13g(elx’ )/de

( –jn.kox’ sin 6 + jkOn,y’ cos 6)

“ exp (jnrkox’ cos 0 + jkon,y’ sin 6). (39)

(38)
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The four unknown scattering coefficients can be deter-

mined from four independent relations (:33), (34), (36) and

(37) as

s~~,, =
[~

W,(x’) N3c(x’ )/&z’ dl’ + All M;(z) (@l)

‘(2)(02) + A31N1+ A21A41 -(2) (g,)

-(2) ~1)+ A41N1
( 11

~ (40)

S2,,Z =
[~

W2(X’) ~Ec(X’)/dn’ dl’ + A12M;(2)(01)

‘(2) (62) + A3z N 1+ A22M~ -(2)(61)

–(2) 61)+ Ab2N1
( Y

~ (41)

S22,1 =
[!

vl(x’) &!Zc(x’)/13rz’ dl’ + A13M;(2)(f31)

‘(2) (02) + A~~N 1+ Az3M~ -(2) (6,)

-(7-) (jI) ~+ A43N1
( Y

(42)

S22,2 =
[s

V2(X’) f@(X’ )/h’ dl’ + A14M;(2) (01)

-(2) (02) + A34N1+ Az4M1 -(2:’ (01)

1‘(2)(*’) 1~
+ A&N1 (43)

where

~~(x’ ) = Allg(Ollx’ ) + A21g(021x’ )

+ A31h(011x’ ) + A41 h(021x’ )

W2(X’ ) = A1zg(Ollx’ ) + A22A621x’ )

+ A32h(011x’ ) + A42~(@21X’ )

~l(X’) = A13g(011x’ ) + Azq$!(@2\X’ )

+ A33h(011x’ ) + &h(%lX’ )

~2(X’ ) = Aldg(Ollx’ ) + A~4g@21x’ )

+ A3qh(611x’ ) + A44h(0zlx’ ), (44)

Z is the determinant of the matrix Q which is given by

[

‘(2)(01) M;(2) (01)+0)(01) M;(1) (61) MlMl

M:(l) (02) M;(l) (02) M;(2) (OJ M;(2) (02)
Q=

N;(l) (O1) N;(l) (O1) N;(2) (01) NI(2) (61)

N ;(2~’(&) N;(2) (&)
)N~(1)(6z) N;(1) (6Z)

(45)

and Ati (i, j = 1, 2, 3, 4) denotes the determinant of (i,

j )-cofactor of matrix Q. Since the unknown coefficients

are expressed in terms of the fields aE c (x’ )/&t, we can

also obtain a boundary integral equation for the case of

two-mode condition formally identical to (27), where the

kernel function P(xlx’ ) and the impressed term Fi (x) are

given by

P(xlx’ ) = G(xlx’ ) – [U:(l)(X) WI (x’ )

-t U;(l) (x) W2 (x’)] /z

.— [U:(2)(X) J“,(X’ ) + UJ(2)(X) V2(X’ )] /E

(46)

and

Fi (x) = – U;(2) (x)

—

+

-.

i-

+

—

+

respectively.

U:(l)(X) [A11M;(2)(OJ + A12M;(2) (@2)

-(2)(61) + A14N1A~3N~ -(2) (02)] /z

U](l) (x) [A21 M;(2) (01) + A22M;(2) (02)

A23N~(2) (6’1) + AZ4N~(2) (02)] /Z

@z)(X) [A31M;(2)(61) + A32M;(2)(~2)

–(2)(01) + A34N1A33 N1 -(2) (02)] /E

U~(2) (x) [A41 M ;(2) (01) + A42M F(2)(OZ)

‘(2) (01) + A44N1A43N ~ -(2) (eZ)] /z, (47)

V. NUMERICAL EXAMPLES

In order to verify the validity of the integral equations,

we use them for the numerical analysis of waveguide cor-

ner-bend. The integral equation (27) can be solved by the

conventional boundary-element method (or moment-

method). The basis functions used in the calculation in

this paper are pulse functions and the testing functions are

delta functions (point-matching). We first solved two

types of right-angle waveguide corner-bend as shown in

Fig. 2(a) and (b) which satisfy the single-mode condition.

Table II shows numerical values of power transmission

coefficient IS2112and power reflection coefficient IS2212and

their total Tc~tal = ISZ112 + I$-z 12 of the comer-bend of

type(A) of Fig. 2(a) with varying the width of both wave-
guides from ‘2koa1 = 2koa2 = 1. 10T to 1.90z. Table III

shows the numerical values found in the case of the cor-

ner-bend oft ype(b) of Fig. 2(b). In these calculations, the

waveguide 1 is truncate by the line 61@; and waveguide

2 is truncate by the line (32(?; as shown in Fig. 2(a) and

(b). Virtual boundary CIO is placed on the line UlCY~which

is perpendicular to Cl and C2, and C20 is placed on the

line a2 cY~whiclh is perpendicular to C3 and Cq as shown

in Fig. 2(a) and (b). The parameters used in the calcula-

tions are n, = 1.0, kO~l = kOOaZ = 0.65 (0 is the
corner point on the boundary C5), and ICOCY161= ICOLX{ 6[
—— k. C12I’3z = ko 4 & = 20.0. The width of the basis I?UISe

function normalized by wavenumber k. was 0.1 on the

boundaries CI-C4 and it was adjusted to be about 0.1 on

the boundaries C5 and C(j so that total number of un-
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Fig.

..................

–2kOui—

P-f-+$5”-”--------
2kou2

(a)

B1

$

c1

..................

—2kOcil–

C2

(b)

2. (a) Waveguide right angle corner-bend of type (A). (b) Waveguide
right angle comer-bend of type (B).

TABLE II

NUMERICAL VALUES OF POWER TRANSMISSION

COEFFICIENT lS2112, POWER REFLECTION COEFFICIENT
IS,, 1’ AND THEIR TOTAL OF THE WAVEGUIDE BEND OF

TYPE (A) UNDER THE SINGLE-MODE CONDITION

2k0 al ]s2,]’ ]s221’ Total

1.lo7r 0.7236 0.2763 0.9999
1.20 7r 0.8262 0.1737 0.9999

1.30 r 0.8570 0.1429 0.9999
1.40 T 0.8572 0.1427 0.9999
1.50 T 0.8272 0.1726 0.9998
1.60 r 0.7428 0.2571 0.9999
1.70 r 0.5376 0.4622 0.9998
1.80 ~ 0.1655 0.8345 1.0000
1.90 T 0.0156 0.9845 1.0001

TABLE III

NUMERICAL VALUES OF POWER TRANSMISSION
COEFFICIENT IS2112, POWER REFLECTION COEFFICIENT

[S2212AND THEIR TOTAL OF THE WAVEGUIDE BEND OF
TYPE (B) UNDER THE SINGLE-MODE CONDITION

2k0 a, Is,,y IS,*I’ Total

l.lorr 0.2700 0.7299 0.9999

1.20 r 0.4686 0.5312 0.9998

1.30 T 0.6173 0.3826 0.9999

1.40 T 0,7299 0.2702 1.0001

1.50 T 0.8154 0.1846 1.0000

1.60 r 0.8803 0.1196 0.9999

1.70 7r 0.9291 0.0706 0.9997

1.80 rr 0.9646 0.0345 0.9991

1.90 ‘x 0.9864 0.0093 0.9957

1.0 r

type (A)

~

m=
—

0.5 -

type (B)

o
1.0 1.5 o

Fig. 3. Comparmon of numerical results with those of [3].

knowns becomes 900. The comparison of these numerical

results with the previous results are shown in Fig. 3 [3].

We can find that these results satisfy the power conser-

vation and also agree with previous results very well. The

virtual boundaries Clo and C20 can be placed at arbitrary

positions in the uniform waveguides 1 and 2. In order to

study the dependence of the results on the position of vir-

tual boundaries, we changed positions of virtual boundary

Clo for CKl al to /316; parallel to the line CYl ci~ in the wave-

guide 1. Simultaneously, we changed the position of the

boundizt~ C’20 from CY2CYi to 62& parallel to the line

Ciz a+ in the waveguides 2 as shown in Fig. 2(a). It is found

that the numerical results are independent of the position

of the boundaries CIO and C20. It must be noted that when

the virtual boundaries CIO and C20 are placed on lines

~1 PI and P2 I%, respectively, boundaries Cl, C2, C3, C4

vanish and the boundary integral equation (27) for the field

~c(x~ becomes the integral equation only for the total field

E(x) having finite sized boundary of C5 + C6 as

o=
i

P(XIX’ ) 13E(x’)/iIn’ dl’ + Fi(x) (48)
(75+ Crj

by considering the notation (5). It is surprising that the

waveguide discontinuity problems can be treated in the

exactly same way without using mode-expansion tech-
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TABLE IV

NUMERI:AL VALUES OF POWER TRANSMISSION COEFFICIENT IS21,, 12AND

TIISZ1,ZI , POWER REFLECTION COEFFICIENT lS22,112AND 711S22,112 AND
THEIR TOTAL OF THE WAVEGUIDE BEND OF TYPE (A) UNDER THE Two-

MODE CONDITION (THE INCIDENT WAVE IS TE,O MODE AND Y1 MEANS
ENERGY SCALE FACTOR OF INCIDENT TEIO MODE)

2kOa1 1s2,,112 Is,,,ll’ IJ11S21,212 711s22,212 Total

2.10 T 0.144 0.152 0.5’77
2.20 T 0.076 0.209 0.586

2.30 r 0.056 0.316 0.495

2.40 rr 0.054 0.463 0.350

2.50 x 0.048 0.623 0.206

2.60 r 0.030 0.747 0.119

2.70 u 0.012 0.827 0.080

2.80 u 0.005 0.872 0.062

2.90 rr 0.026 0.872 0.044

0.127 1.000
0.128 1.000

0.133 1.000

0.133 1.000
0.123 1.000
0.104 1.000

0.081 1.000

0.061 1.000

0.058 1.000

TABLE V
NUMERICAL VALUES OF POWER TRANSMISSION COEFFICIENT Yzl S22 , I* AND

1S2[,212, POWER REFLECTION COEFFICIENT Y2]S,,,, 12AND 1S,2,, ~ AND
THEIR TOTAL OF THE WAVEGUIDE BEND OF TYPE (A) UNDER THE Two-

MODE CONDITION (THE INCIDENT WAVE IS TE20 MODE AND -yZ MEANS

ENERGY SCALE FACTOR OF INCIDENT lrE20 MODE)

2kOa1 721s21,112 721s22,112 1s2,,212 1s22,212 Total

2.10 ‘u 0.577

2.20 rr 0.586
2.30 T 0.495
2.40 T 0.350
2.50 rr 0.206
2.60 T 0.119
2.70 T 0.080
2.80 T 0.062

2.90 T 0.044

0.127 0.143 0.153 1.000
0.128 0.221 0.065 1.000
0.133 0.346 0.026 1.000
0.133 0.506 0.011 1.000
0.123 0.662 0.008 0.999
0.104 0.765 0.012 1.000
0.081 0.821 0.018 1.000
0.061 0.853 0.023 0.999
0.058 0.860 0.037 0.999

niques as that for the scattering problems by the isolated

finite-sized metallic objects whose shape is given by Fig.

2(a) and (b).

For the case where the two-mode condition is satisfied,

numerical values of power transmission coefficients

lS,l,, 12, T, “ )S21 212 and power reelection coefficients

ISZ2,112, -yI . lS22,2~2, and their total TDtal = 1S21,112+ ~1

“ 1s2,,212 + ls2~,,12 + ‘y, “ 1S22,212of the corner-bend of

type(A) of Fig. 2(a) are shown m Table IV with varying

the width of the both waveguides from 2koal = 2koa2 =
2. 10m to 2.90Tr for the case of incident TEIO mode. The

results for the incident TE20 mode are shown in Table V.

In these Tables, constants ~1 and 72 mean energy scale

factor of incident TEIO and TE20 mode, respectively,

which are defined by

()-ii= (energy of $% mode of unit amplitude) /
72

(energy of $Sfi mode of unit amplitude).

These results also satisfy the energy conservation and re-

ciprocity (yk IS2i,~\2 of incident TE~O mode) = (~jIS2i,~12

of incident TEjo mode) (i, j, k = 1, :2) and show the va-

lidity of the integral equation (27) for the problems which

satisfy the two-mode condition.

VI. CONCLUSION

The novel integral equations which can be called

guided-mode extracted integral equations (GMEIE’s) for

the basic theory of CAD software of various waveguide

circuits has been presented. As rather simple examples,

concrete expressions of new boundary integral equations

for the corner-bend of metallic waveguides which satisfy

the single-mode and two-mode conditions have been ob-

tained. By using the integral equations, we can treat the

waveguide discontinuity problem like the scattering prob-

lem of isolated finite-sized metallic objects. The basic idea

of the new integral equation is very general. Hence, the

GMEIE is applicable to the more complicated waveguide

circuits having more than two ports or the dielectric open

waveguide circuits [8]-[10]. Since the GMEIE does not

employ the mode expansion techniques, it will be easily

applicable to three dimensional problems. The theory used

in the GMEIF, is also applicable to problems of other fields

such as acoustic, elastic waves.
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