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New Boundary Integral Equations for CAD of
Waveguide Circuits: Guided-Mode Extracted
Integral Equations

Kazuo Tanaka Member, IEEE, and Masaaki Nakahara

Abstract—Novel boundary integral equations which are ap-
plicable to the analysis of many kinds of waveguide circuits are
presented. The new integral equations can treat the waveguide
discontinuity problems like the scattering by the isolated finite-
sized metallic objects or cavity problems and do not employ
normal-mode expansion techniques. They are suitable for the
basic theory of CAD software for various waveguide circuits.
The 2-port and H-plane waveguide discontinuity problems
which satisfy the single-mode and two-mode conditions are
treated in this paper. The case of waveguide corner bend is
considered as an example. The numerical examples are shown
in order to confirm the validity of the new integral equations.

1. INTRODUCTION

ITH the development of computer-aided design

(CAD) of complicated waveguide circuits or dis-
continuities, numerical approaches such as boundary ele-
ment method (moment method) based on integral equa-
tion methods occupy attentions of many researchers.
References [1]-[6]. In the direct application of these in-
tegral equation methods to waveguide discontinuity prob-
lems, we often encounter the treatment of integral along
infinite region of the uniform waveguide. In order to avoid
this difficulty, various techniques based on normal-mode
expansion theory are often employed in the integral equa-
tion methods. However, these methods based on the nor-
mal-mode expansion techniques will be very complicated
in the application of CAD software for the various three-
dimensional waveguide circuits or open dielectric wave-
guide circuits of complicated configuration.

In this paper, novel boundary integral equations which
are applicable to the analysis of many kinds of waveguide
circuits are presented [7]. Since new integral equations
can treat the waveguide discontinuity problems like the
scattering by the isolated finite-sized metallic objects or
cavity problems and do not employ the normal-mode ex-
pansion techniques, they are very suitable for the basic
theory of CAD software for various waveguide circuits.
The 2-port waveguide discontinuity problems are consid-
ered. The case of waveguide corner bend is considered in
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this paper. Considering rather simple problems, we can
show the basic idea and discovery which are used in de-
riving new integral equations. We treat the case of H-plane
waveguide discontinuity problems which satisfy the sin-
gle-mode and two-mode conditions. The numerical ex-
amples of the 2-port waveguide circuits are shown in or-
der to confirm the validity of the new integral equations.

II. WAVEGUIDE BENDS

Since the new boundary integral equations for the gen-
eral waveguide circuit have complicated expressions, we
restrict our attention to a simple two-ports circuit, i.e.,
the arbitrary-shaped waveguide bend as shown in Fig. 1.
For the mathematical simplicity, we consider the H-plane
waveguide discontinuity problem. The time factor exp
(jof) is understood. The waveguide 1 of width 2k,a, and
waveguide 2 of width 2kya, are joined together to form
angle 6,-0, through the connection section of arbitrary-
shape as shown in Fig. 1, where wavenumber k is given
by ky = w/c and c is light velocity in vacuum. It is as-
sumed that both waveguides are filled with dielectric of
relative permittivity e,. We first consider the case where
they satisfy the single-mode condition. We denote the
boundaries of both waveguides by C,, C,, C; and Cy, and
those of the connection section by C; and Cs. We also
denote the virtual boundaries between two waveguides and
the connection section by Cyy and Cy as shown in Fig. 1.
A TE;, mode denoted by £~ (x) is incident from the
waveguide 2 to the connection section. We denote the z
component of the total electric field by E(x). From Max-
well’s equations and Green’s theorem, the conventional
boundary integral representation for the total field E(x) is
written as

E(x) = SC G(x|x') 3E(x’)/an’ dl’ (1)
where
Gx|x') = —j/4HP (nkolx — x' ), Q)

C=C+C+C+C+Cs+Cs,n, = ()% 3/0n
represents the derivatives normal to C;~Cs, in the outward
direction and vectorx = (x, y) = (r, ) and x' = (x', y')
denote the observation point and source point, respec-
tively, in the coordinate system shown in Fig. 1. The in-
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x=(x,y) =(r,0)

Fig. 1. Waveguide bend with arbitrary shaped connection section.

cident wave is reflected and transmitted by the bend. The
reflected wave in the waveguide 2 and transmitted wave
in the waveguide 1 are denoted by S, E*®(x) and
S>1 E M (x), respectively, where S,, and S, are reflection
and transmission coeflicients, respectively. The coeffi-
cients S,; and §,, are referred to the section Cy and Cy,
respectively, shown in Fig. 1. The total field E(x) will be
very complicated in the vicinity of the connection section.
Only the reflected wave plus the incident wave, however,
can survive at points far away from the bend in the wave-
guide 2 and only the transmitted wave can survive at
points far away in the waveguide 1, So, we decompose
the total field E(x) in the waveguides 1 and 2 into field
components as

E(x) = ES(x) + SE*D(x),  in the waveguide 1,

3)
E(x) = ES(x) + Sp E*@@®) + E-®(x),

in the waveguide 2, )

respectively. The field denoted by E© (x) is the difference
between the total field and the transmitted wave in the
waveguide 1 and the difference between the total field and
the reflected and incident waves in the waveguide 2. The
field E € (x) is called the disturbed field in this paper [7]-
[10]. For convenience of notation we denote the total field
in the connection section by the same symbol E  used for
the disturbed field in the waveguieds:

E(x) = ES(x)

We first consider the case where the observation point x
is placed at a point far away from the connection section
in the waveguide 1. Substituting (3) and (4) into (1), we
can obtain the following equation:

in the connection section. (5)

Ex) + Szl{EHl) *x)
- Sm@ Gx|x') 3E* D (x")/on’ dl}

= SC G(x|x') EC(x") /on’ dI’
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G(x|x') dE TP (x") /an’ dl’
3+ Ca
+ S G(x|x') dE~P(x') /on’ dl'. (6)
Cy+ G
The semi-infinite line integrals of the mode functions
E*D(x) and E*® (x) along C; + C, and C; + C, can be

substituted by line integral along virtual boundary C;, and
C,o by using Green’s theorem. We have:

E*W () — S

= U (x)

Gx|x') dE*D (x") /on’ dl'
(&)

Ci+

(x to the right of Cjg)

- S G(x|x') dE* D (x") /on' dl'
C1+C

= U*P@)  (x to the left of Cyg) @
where
U+(1)(x) — S [G(xlxl) OE +(1) (x')/a”li
Cro
_ E+(l)(xl) aG(xlx’)/an” dl’ (8)
and
Eia)(x) _ S G(xlx/)aEi(?.)(x')/an’dll
C3+Cs
- U@ (x) (x to the left of Cy),
_ S Glx|x') GE*® (x') /on’ dl
C3+Cy
= U*®(x)  (x to the right of Cy) ®)
where

U®(x) = Sc [G(x|x") OE*® (x") /dn}

— E*P(x") 0G(x|x')/on5] dl’  (10)

respectively, and the unit vector n, (j = 1, 2) normal to
virtual boundaries Cj, (j = 1, 2) are shown in Fig. 1. By
using (7) and (9), we can rewrite (6) as

EC(x) + 8§, U*" (%)
= SC Gx|x') dE€(x') /an' dl' — S, U (x)

— U @@x. (xto the right of Cyp) 11

Since we can put the observation point x in (11) at a point
far away (r — o, 8 = 6;) from the connection section in
the waveguide 1, we can use the asymptotic expansion of
Green’s function in (11) as

Gx|x') = G(r, 0|x")

= A(Ng®|x') + olker)™*/*,  (12)
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where
A() = —j/4 12/ (mn ko0 exp (—jnkor)  (13)
g@|x') = exp (jn.kyx' cos 0 + jnkyy'sin ).  (14)

Since the metallic waveguide cannot support waves of the
form A(r) along its boundary, the following conditions
must be held:

lim E€(r, 6,)/A(r) = 0,

r—om

lim E€(r, 6,)/A(r) = 0.

r— oo

(15)

We substitute asymptotic expression (12) into (11), divide
both sides of the resulting equation by the common func-
tion A(r) and set § = 0, and r — oo in the final equation.
If we use the conditions (15), we can obtain the following
equation:

SuM*P©O) + SHM*@@,)

= ch(ollxw BEC(x")/an' dl' - M~®6)) (16)
where

Mi(])(@) - gc [g(olxl) aEi(j) (xr)/an; _ Ei(j)(xr)

G=12 a7

We next consider a condition that must hold at a point far
away from the connection section in the waveguide 2. By
the same procedure as that used in deriving (16), we can
obtain the following equation:

SuM* D) + SpM*®©,)

- dg0lx’)/on} 1 dl’

= SC gB,)x") BEC(x"y/on' dI' — M~ (8,). (18)

If we solve (16) and (18) for unknown constants S,; and
Sy, then they can be expressed in terms of the disturbed
field OE € (x) /dn on the walls of the two waveguides and
of the total field dE€(x) /dn = 0FE(x)/dn on the wall of
the connection section as

S, = HC Wx') 3EC(x") /on’ dl’

+ M_(Z) (02)M+(2) (01) _ M“(Z) (01)M+(2) (02)] /A

(19
Sy = HC V(x') EC(x")/on’ dl’

+ M@ (01)M+(1) 6, — M~@ (02)M+(1) (01)} /A
(20)

where

Wx') = M*®(0,)g0:x') — M*P©6)g0,|x") 21
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V') = M P©0)g@,)x') — MYV 6 g0:]x') (22)

A=MOOEIMT®@G) - MTPO )M @,).
(23)

III. NEw BOUNDARY INTEGRAL EQUATION

Since the reflection and transmission coefficients can be
expressed in terms of the field oF C(x) /dn, the conven-
tional integral representation (1) can be rewritten in terms
of only the field E(x) by substituting (3), (4), (5), (19)
and (20) into (1) as

~

ES) = cP(xlx’) BEC(x')/on' dl' + F'(x) (24)

where

P(x|x') = Gx|x") — [UT® x) W(x")

+ UTQ@ra')/A (25)

Fi) = — U )
— U @M 0)M V)
- M@ @)M P 9))/A
— U WM P 0) M6

- M@ @M @1/A. 26)
If we introduce the boundary condition that the total and
disturbed electric fields must vanish on the boundaries C
=C +C, + Cy + C4 + Cs + Cg, we can obtain the
new integral equation as follows:

]

0= CP(x|x’)6EC(x’)/6n’dl'+Fi(x) @7

The integral equation (27) is compared with the conven-
tional equation obtained by introducing the boundary con-
dition to (1) in Table I. We find that the integral equation
(27) also extends over the same infinite region C as in the
conventional integral equation. However, the disturbed
field become zero in the region sufficiently far away from
the connection section, so that, in equation (27), C can be
considered a finite region. So, we can perform the nu-
merical analysis of (27) directly. Apart from the differ-
ence in the kernel and in the impresses function, we find
that the basic structure of (27) is same as that of the con-
ventional one. So, we can apply various techniques that
were developed for solving the conventional equation to
solve the boundary integral equation (27). Since we can
consider that, in the kernel function P(x{x"), the part de-
pending on the guided mode is extracted from the con-
ventional kernel function G(x|x'), we can call this type
of integral equation the guided-mode extracted integral
equation (GMEIE).
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TABLE 1
COMPARISON BETWEEN CONVENTIONAL INTEGRAL EQUATION AND NEW
INTEGRAL EQUATION (27).

Conventional Integral New Integral

Equation Equation (27)
Unknown function E(x) E°(x)
Kernel function G(x|x") P(x|x")
Impressed term mcident wave F'(x)

C=C +C+G
+C,Cs + Cy

C=C+GC+G
+C+ Cs + Cs

Integral region

IV. Two-Mobe CONDITION

So far, we have considered the case where the wave-
guides satisfy the single-mode condition. Let’s next con-
sider the case of multi-mode conditions. Since the general
multi-mode conditions requires a complicated treatment,
for simplicity, we explain the case where both wave-
guides satisfy the two-mode condition. Results for gen-
eral multi-mode cases will be easily anticipated from this
example. We assume that TE;, mode, denoted by
E;®(x), is incident to the connection section from the
waveguide 2. We assume that the total field should be
given by the following expressions:

Ex) = ES(x) + Sy Ef V() + Sy.E7V (),

in the waveguide 1, 28)

E@x) = EC() + Sp E{® () + $»2E7 P (x)
+ E{®(x), in the waveguide 2, (29)
E(x) = ES(x) in the connection section, (30)
where S, ; (i, j, = 1, 2) represent the scattering coeffi-

cients of TE; mode in the waveguide j for the case of
incident from waveguide 2 and EF(x) (i, j = 1, 2) rep-
resents the mode function TE;y mode in the waveguide j.
Substituting (28), (29), and (30) into (1) and using Green’s
theorem (7) and (9), we can obtain the following relations
in a way similar to that which has been used in the case
of the single-mode condition:

EC) + S0, UTP ) + $0,U7 V)
= S G(x|x') OE€(x")/on’ dl'
C

— 8 UTP @) — 8,,U5 2@ — UT? )
€2Y)

where

U @) = SC [G(x|x') OEEP (x') /on] — EFD(x")
70

< 0G(x|x") /on) 1 dl" G, j=1,2). (32)
Substituting asymptotic expression (12) into (31) and fol-

lowing the procedure used in the previous section, we can
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obtain the following relations:
521,1Mim)(01) + S21,2M2+(1) 2]
+ 522,1M1+(2)(91) + S0 M5 (9)

= SC g0:|x") OEC (") /on" dl' — M7®(6) (33)

S21,1M1+(1)(92) + 521,2M2+(1)(92)
+ Sy 1 M{P 02 + Sy aM7? (0,

= SC 8(ba)x") EC(x") /on" dlI' — M7®(6,) (34)
where
M ©O) = Sqo [g®lx') BEF P (x") /om;

— EFP ') 3g|x')/on 1 dl’
()= 1,2). 43

Since four unknown coefficients Sy; 1, 8212, S22,1 and Sy, »
exist in this case, they cannot be obtained from two re-
lations (33) and (34). It is necessary to derive two more
relations in order to determine these coefficients. They are
obtained as follows: Substituting asymptotic expression
(12) into (31), divide both sides of the resulting equation
by the common function A(r) and differentiate both sides
of the resulting equation with respect to the variable angle
0. If weset = 6,0 = 0, and r — oo in the final equation,
we can obtain the following two relations as

521,1N1+(1)(01) + 521,2N2+(])(91)
+ SpaNT@6,) + Sn,N7P6)

= SC h@|x') dEC(x")/on' dI' — NTP (@)

(36)
S iNTP 0 + S50 (NP (6,)
+ Szz,leL(Z) 6 + 522,2N2+(2)(02)

= gc h(O,|x") GE€(x") /on' dl' — N7P6,) (37)
where
NFD (@) = S [h@6|x") OEF (x")/0n]
Go

— EFf(x") oh(6|x")/on}] dl’

G,j=12 (38)
h@|x') = dg@|x') /a6
= (~jn,kox" sin 0 + jkgn,y' cos 6)
- exp (jn kox' cos 0 + jkon,y' sin 0). (39)
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The four unknown scattering coefficients can be deter-
mined from four independent relations (33), (34), (36) and
(37) as
$11 = {S Wy (x') BEC(x')/on’ dl' + Ay M{® ()
+ Ay MT®(0) + Ay NTP @)

+ Ay N7® (01)} /E 40)

S, = [S Wy(x') E€(x")/on' dl’ + ApMT?6)

+ Ay M7®0) + ApNT? ()
+ ApNT® (00] /: (41)

Sn1 = H Viix') EC(x')/on’ dl' + AsM7P ()

+ A23M1_(2)(02) + A331\/1_(2)(‘91)
+ AN (01)} /: 42)

Spa = [S Vax") EC(x")/an’ dl' + A14M1_(2)(01)
+ A MTD0,) + Ay NTP(0)

+ A44Nr(2>(01>] /:

(43)
where
Wix') = Ay gBi]x") + Ay g(Balx”)
+ Ay h(8]x") + Ay h(By|x")
Wax') = Apg6ilx’) + Aypg(Balx")
+ Aph(@1]x") + Aph(B]x")
Vix') = A g(61|x') + Asg(0:]x")
+ Ay h(0|x") + Aph@:]x")
Vax') = Aragilx") + As480|x")
+ As h(By|x") + Ayh(82]x"), (44)

% is the determinant of the matrix Q which is given by

MF? 6y
M3 6,)
N3®(6))
N3 ®(6,)
(45)

and A; (i, j = 1, 2, 3, 4) denotes the determinant of (i,
j)-cofactor of matrix Q. Since the unknown coefficients
are expressed in terms of the fields dE “(x')/dn, we can

M{? @)
M? 6y
N{® @)
N{®®6,)

MO0y
MM 0y
Ni®O @)
N1 @,)

M5D @)
M3 0,)
N7V @)
N,
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also obtain a boundary integral equation for the case of
two-mode condition formally identical to (27), where the
kernel function P(x|x’) and the impressed term F i(x) are
given by

Px|x') = G@x|x') — [UT P @)W (")
+ U Q@ Wy (x)1/E
— [UFP Vi) + UsP@ V&) /E

(46)
and
Fix) = -U;?W®)

-~ UfY@ A MTP @) + ApM7® 0y

+ ApNT@@) + AuNTP0)1/E

~ U@ A MTP0) + ApMT? (6

+ Ay NT® ) + A NTP(]/E

~ U@ [AaMTP @) + ApMiP0)

+ ANT@@0) + AuNTP(6)1/E

~ UFO@[AaM{® ) + A M7 6))

+ ApNT®@0) + AuNTP0)1/E, 47)
respectively.

V. NuUMERICAL EXAMPLES

In order to verify the validity of the integral equations,
we use them for the numerical analysis of waveguide cor-
ner-bend. The integral equation (27) can be solved by the
conventional boundary-element method (or moment-
method). The basis functions used in the calculation in
this paper are pulse functions and the testing functions are
delta functions (point-matching). We first solved two
types of right-angle waveguide corner-bend as shown in
Fig. 2(a) and (b) which satisfy the single-mode condition.
Table II shows numerical values of power transmission
coeflicient |S,,|* and power reflection coefficient |$2|* and
their total Total = |Sx|> + |Sx|* of the corner-bend of
type(A) of Fig. 2(a) with varying the width of both wave-
guides from 2kga; = 2kga, = 1.107 to 1.907. Table 11T
shows the numerical values found in the case of the cor-
ner-bend of type(b) of Fig. 2(b). In these calculations, the
waveguide 1 is truncate by the line 3, B1 and waveguide
2 is truncate by the line 8,85 as shown in Fig. 2(a) and
(b). Virtual boundary C, is placed on the line oj which
is perpendicular to C; and C;, and Gy is placed on the
line oy b which is perpendicular to C; and Cy as shown
in Fig. 2(a) and (b). The parameters used in the calcula-
tions are n, = 1.0, koOa; = koOa, = 0.65 (O is the
corner point on_the boundary Cs), and koot; B1 = Koo} Bi
= koo B, = koo 85 = 20.0. The width of the basis pulse
function normalized by wavenumber k, was 0.1 on the
boundaries C;-C, and it was adjusted to be about 0.1 on
the boundaries Cs and Cg so that total number of un-
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O
¢ 2
B, Cyq %

(b)

Fig. 2. (a) Waveguide right angle corner-bend of type (A). (b) Waveguide
right angle corner-bend of type (B).

TABLE II
NUMERICAL VALUES OF POWER TRANSMISSION
COEFFICIENT |8y, ]2, PowER REFLECTION COEFFICIENT
|S221* AND THEIR TOTAL OF THE WAVEGUIDE BEND OF
TYPE (A) UNDER THE SINGLE-MODE CONDITION

2koay 1821 1822]? Total
1.10 = 0.7236 0.2763 0.9999
1.20 0.8262 0.1737 0.9999
1.30 = 0.8570 0.1429 0.9999
1.40 n 0.8572 0.1427 0.9999
1.50 7 0.8272 0.1726 0.9998
1.60 0.7428 0.2571 0.9999
1.70 = 0.5376 0.4622 0.9998
1.80 = 0.1655 0.8345 1.0000
1.90 7 0.0156 0.9845 1.0001
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TABLE III
NUMERICAL VALUES OF POWER TRANSMISSION
COEFFICIENT |S,;|?, POWER REFLECTION COEFFICIENT
[S5,]* AND THEIR TOTAL OF THE WAVEGUIDE BEND OF
TyPE (B) UNDER THE SINGLE-MODE CONDITION

2kpa, 1851 822 Total
1.10w 0.2700 0.7299 0.9999
1.20 w 0.4686 0.5312 0.9998
1.30 7 0.6173 0.3826 0.9999
140w 0.7299 0.2702 1.0001
1.50 = 0.8154 0.1846 1.0000
1.60 = 0.8803 0.1196 0.9999
1.70 = 0.9291 0.0706 0.9997
1.80 w 0.9646 0.0345 0.9991
1.90 « 0.9864 0.0093 0.9957
1.0
I type (A)

o,

1Y

wn

051
o present method
—— ref. {3}
type (B)
o . . . . .
1.0 15 2.0
2koay/ 1t

Fig. 3. Comparison of numerical results with those of [3].

knowns becomes 900. The comparison of these numerical
results with the previous results are shown in Fig. 3 [3].
We can find that these results satisfy the power conser-
vation and also agree with previous results very well. The
virtual boundaries Cjy and C,; can be placed at arbitrary
positions in the uniform waveguides 1 and 2. In order to
study the dependence of the results on the position of vir-
tual boundaries, we changed positions of virtual boundary
Cyp for oy o] to 8, 8] parallel to the line oy o] in the wave-
guide 1. Simultaneously, we changed the position of the
boundary Cy from a,ab to 3,835, parallel to the line
o, o3 in the waveguides 2 as shown in Fig. 2(a). It is found
that the numerical results are independent of the position
of the boundaries Cjg and C,g. It must be noted that when
the virtual boundaries Cjy and C,, are placed on lines
G161 and 8,03, respectively, boundaries C|, C,, C;, C,
vanish and the boundary integral equation (27) for the field
E € (x) becomes the integral equation only for the total field
E(x) having finite sized boundary of Cs + Cg as

0= S P(x|x') E(x')/on' dl' + F'(x) (48)

C5+ Cs

by considering the notation (5). It is surprising that the
waveguide discontinuity problems can be treated in the
exactly same way without using mode-expansion tech-
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TABLE IV
NUMERICAL VALUES OF POWER TRANSMISSION COEFFICIENT |Sy; 1|? AND
¥1)821.2]%, POWER REFLECTION COEFFICIENT | Sy, 1|* AND 7,555, 1|* AND
THEIR TOTAL OF THE WAVEGUIDE BEND OF TYPE (A) UNDER THE Two-
MobE CoNDITION (THE INCIDENT WAVE 18 TE;; MODE AND v, MEANS
ENERGY SCALE FACTOR OF INCIDENT TE |y MODE)

2kqa, 1521,1‘2 lSzz,l|2 ’Y||Szl,2|2 ’)‘llszz,zl2 Total
2107 0.144 0.152 0.577 0.127 1.000
220w 0.076 0.209 0.586 0.128 1.000
2307 0.056 0.316 0.495 0.133 1.000
240w 0.054 0.463 0.350 0.133 1.000
250« 0.048 0.623 0.206 0.123 1.000
2.60 7 0.030 0.747 0.119 0.104 1.000
270« 0.012 0.827 0.080 0.081 1.000
280« 0.005 0.872 0.062 0.061 1.000
290 7 0.026 0.872 0.044 0.058 1.000
TABLE V

NUMERICAL VALUES OF POWER TRANSMISSION COEFFICIENT ¥ S, 1| AND
1821,2]>, POWER REFLECTION COEFFICIENT 7,|S2, ||? AND [S, 1|* AND
THEIR TOTAL OF THE WAVEGUIDE BEND OF TYPE (A) UNDER THE TWO-
MoDE CoNDITION (THE INCIDENT WAVE IS TE,, MODE AND y, MEANS
ENERGY SCALE FACTOR OF INCIDENT TE,, MODE)

2kya, ’Yzlszl,l|2 72]522,1|2 |S2l,2‘2 lS22,2|2 Total
210 7 0.577 0.127 0.143 0.153 1.000
2207 0.586 0.128 0.221 0.065 1.000
230w 0.495 0.133 0.346 0.026 1.000
240 7 0.350 0.133 0.506 0.011 1.000
250w 0.206 0.123 0.662 0.008 0.999
2.60 7 0.119 0.104 0.765 0.012 1.000
2.70 7 0.080 0.081 0.821 0.018 1.000
2.80 7 0.062 0.061 0.853 0.023 0.999
290« 0.044 0.058 0.860 0.037 0.999

niques as that for the scattering problems by the isolated
finite-sized metallic objects whose shape is given by Fig.
2(a) and (b).

For the case where the two-mode condition is satisfied,
numerical values of power transmission coeflicients

1850417, |8, 2| and power reflection coefficients
|S22 2 |Sz2 2| and their total Total = |S,; ;|* + v,
lS21,2| + 'Szz 1| + Y1 ° lSZ2 2] of the corner-bend of

type(A) of Fig. 2(a) are shown in Table IV with varying
the width of the both waveguides from 2kqa, = 2kga, =
2.107 to 2.90x for the case of incident TEy mode. The
results for the incident TE,; mode are shown in Table V.
In these Tables, constants vy, and vy, mean energy scale
factor of incident TE;, and TE,, mode, respectively,
which are defined by

= (energy of 122 mode of unit amplitude) /

Y2

(energy of T mode of unit amplitude).

These results also satisfy the energy conservation and re-
ciprocity (v;|Sy; ;|* of incident TE;, mode) = (v;|Sy 4|?
of incident TE;, mode) (i, j, k = 1, 2) and show the va-
lidity of the integral equation (27) for the problems which
satisfy the two-mode condition.

VI. CoNCLUSION

The novel integral equations which can be called
guided-mode extracted integral equations (GMEIE’s) for
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the basic theory of CAD software of various waveguide
circuits has been presented. As rather simple examples,
concrete expressions of new boundary integral equations
for the corner-bend of metallic waveguides which satisfy
the single-mode and two-mode conditions have been ob-
tained. By using the integral equations, we can treat the
waveguide discontinuity problem like the scattering prob-
lem of isolated finite-sized metallic objects. The basic idea
of the new integral equation is very general. Hence, the
GMEIE is applicable to the more complicated waveguide
circuits having more than two ports or the dielectric open
waveguide circuits [8]-[10].. Since the GMEIE does not
employ the mode expansion techniques, it will be easily
applicable to three dimensional problems. The theory used
in the GMEIE is also applicable to problems of other fields
such as acoustic, elastic waves.
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